Lunar and Planetary Institute
Permanent URI for this community
The Lunar and Planetary Institute is a research institute that provides support services to NASA and the planetary science community, and conducts planetary science research under the leadership of staff scientists, visiting researchers, and postdoctoral fellows.
Browse
Browsing Lunar and Planetary Institute by Subject "Achondrites"
Results Per Page
Sort Options
-
Item40Ar/39Ar ages of L4, H5, EL6, and feldspathic ureilitic clasts from the Almahata Sitta polymict ureilite (asteroid 2008 TC3)(Meteoritics & Planetary Science, 2023-02-22) Goodrich, Cyrena Anne ; Turrin, Brent D. ; Lindsay, Fara ; Delaney, Jeremy S. ; Park, Jisun ; Herzog, Gregory F. ; Swisher Jr, CarlThe Almahata Sitta (AhS) meteorite consists of disaggregated clasts from the impact of the polymict asteroid 2008 TC3, including ureilitic (70%–80%) and diverse non-ureilitic materials. We determined the 40Ar/39Ar release patterns for 16 AhS samples (3–1500 μg) taken from three chondritic clasts, AhS 100 (L4), AhS 25 (H5), and MS-D (EL6), as well as a clast of ureilitic trachyandesite MS-MU-011, also known as ALM-A, which is probably a sample of the crust of the ureilite parent body (UPB). Based on our analyses, best estimates of the 40Ar/39Ar ages (Ma) of the chondritic clasts are 4535 ± 10 (L4), 4537–4555 with a younger age preferred (H5), and 4513 ± 17 (EL6). The ages for the L4 and the H5 clasts are older than the most published 40Ar/39Ar ages for L4 and H5 meteorites, respectively. The age for the EL6 clast is typical of older EL6 chondrites. These ages indicate times of argon closure ranging up to 50 Ma after the main constituents of the host breccia, that is, the ureilitic components of AhS, reached the >800°C blocking temperatures of pyroxene and olivine thermometers. We suggest that these ages record the times at which the clasts cooled to the Ar closure temperatures on their respective parent bodies. This interpretation is consistent with the recent proposal that the majority of xenolithic materials in polymict ureilites were implanted into regolith 40–60 Ma after calcium–aluminum-rich inclusion and is consistent with the interpretation that 2008 TC3 was a polymict ureilite. With allowance for its 10-Ma uncertainty, the 4549-Ma 40Ar/39Ar age of ALM-A is consistent with closure within a few Ma of the time recorded by its Pb/Pb age either on the UPB or as part of a rapidly cooling fragment. Plots of age versus cumulative 39Ar release for 10 of 15 samples with ≥5 heating steps indicate minor losses of 40Ar over the last 4.5 Ga. The other five such samples lost some 40Ar at estimated times no earlier than 3800–4500 Ma bp. Clustering of ages in the low-temperature data for these five samples suggests that an impact caused localized heating of the AhS progenitor ~2.7 Ga ago. In agreement with the published work, 10 estimates of cosmic-ray exposure ages based on 38Ar concentrations average 17 ± 5 Ma but may include some early irradiation.
-
ItemChromium Isotopic Evidence for Mixing of NC and CC Reservoirs in Polymict Ureilites: Implications for Dynamical Models of the Early Solar System(American Astronomical Society, 2021-01-28) Goodrich, Cyrena Anne ; Sanborn, Matthew E. ; Yin, Qing-Zhu ; Kohl, Issaku ; Frank, David ; Daly, R. Terik ; Walsh, Kevin J. ; Zolensky, M. E. (Michael E.) ; Young, Edward R. D. ; Jenniskens, Petrus Matheus Marie ; Shaddad, Muawia H. ; https://orcid.org/0000-0002-3181-1303Nucleosynthetic isotope anomalies show that the first few million years of solar system history were characterized by two distinct cosmochemical reservoirs, CC (carbonaceous chondrites and related differentiated meteorites) and NC (the terrestrial planets and all other groups of chondrites and differentiated meteorites), widely interpreted to correspond to the outer and inner solar system, respectively. At some point, however, bulk CC and NC materials became mixed, and several dynamical models offer explanations for how and when this occurred. We use xenoliths of CC materials in polymict ureilite (NC) breccias to test the applicability of such models.