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FINITE AMPLITUDE FOLDING: Zuber M.T. and Parmentier E.M.

horizontal strain rate € x With a value of -1. Using this approach, the growth rates of folding determined

from the finite element analysis could be directly compared to those from previous infinitesimal amplitude
analytical solutions [5,6]. In the analytical solutions the dimensionless rate of fold growth q is expressed
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where A, is the amplitude of initial random interface perturbations and A is the fold amplitude at time . In
the finite element models q is determined from the slope of the relationship between the natural log of the

rms amplitude of deformation, and the horizontal strain € I .

Figure 2 shows estimates of q for three vertical viscosity distributions with fixed thickness and
viscosity structure in the brittle layer and different values of d for the ductile layer. In each case q exceeds
the critical value of one, which indicates that lithospheres with all of these viscosity distributions will develop
folds when horizontally compressed. As for the infinitesimal amplituce solutions [5,6], the rate of fold
amplitude growth is greater for smaller d. Also note that with decreasing d, q progressively decreases with

increasing € »d » indicating that folds will grow increasingly slowly at finite strains.

In infinitesimal amplitude solutions, folding instabilities are driven by discontinuities in vertical
viscosity at the surface or at interfaces between layers [e.g. 11]. However, Figure 2 demonstrates that a
medium with a vertical viscosity distribution that is everywhere continuous and that approximates the
probable vertical distribution of strength in the lithosphere is also unstable with respect to folding. Hence,
discontinuities in vertical viscosity, either within the lithosphere or at the surface, are not required for the
development of folds. It is interesting to note that the growth rates obtained in Figure 2 are nearly identical
to those predicted if the brittle layer were instead characterized by a uniform viscosity u,. This indicates that
the rate of fold growth in a medium with a distributed driving force associated with a continuous vertical
viscosity distribution can be adequately estimated from a medium with a discrete viscosity jump at the
surface. However, calculation of the perturbed velocity field that characterizes the style of deformation
should be based on the detailed viscosity structure.

The solutions in Figure 2 assume no lateral viscosity variations. However, spatial variations in
lithospheric thickness might be expected on Earth or Venus due to thermal, compositional or mechanical
heterogeneities. Simple solutions for compression of a non-Newtonian viscous lithospheric layer with a small
thickness variation show significant stress supported topography that may explain salient morphologic
features of certain mountain belts [12]. Similar models adapted to consider finite lithospheric thickness
variations may be relevant to the large-scale topographic expression of structures on Earth and Venus, such
as the Himalayas that border the Tibetan Plateau, and Vesta Rupes and Akna and Freyja Montes that
surround Lakshmi Planum.
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Figure 1. Geometry and boundary conditions for
the non-Newtonian finite element folding problem.
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Figure 2. Vertical viscosity structures (left) and associated relationships between In(rms amplitude) and mean
horizontal strain. The slopes of the lines on the right give the growth rates of folding, q. Parameter values
for this calculation are p,=100, p,=0, Z,,=0.8, n;=100, and n,=3. Values of q listed represent those at
small strains, where the slopes, and growth rates, are greatest. For d=0.1 and 0.05, the slopes of the lines
decrease at larger strains, indicating that the rate of fold amplitude growth also decreases.
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